Gate-controlled mid-infrared light bending with aperiodic graphene nanoribbons array.
نویسندگان
چکیده
Graphene plasmonic nanostructures enable subwavelength confinement of electromagnetic energy from the mid-infrared down to the terahertz frequencies. By exploiting the spectrally varying light scattering phase at the vicinity of the resonant frequency of the plasmonic nanostructure, it is possible to control the angle of reflection of an incoming light beam. We demonstrate, through full-wave electromagnetic simulations based on Maxwell equations, the electrical control of the angle of reflection of a mid-infrared light beam by using an aperiodic array of graphene nanoribbons, whose widths are engineered to produce a spatially varying reflection phase profile that allows for the construction of a far-field collimated beam towards a predefined direction.
منابع مشابه
Substrate-sensitive mid-infrared photoresponse in graphene.
We report mid-infrared photocurrent spectra of graphene nanoribbon arrays on SiO2 dielectrics showing dual signatures of the substrate interaction. First, hybrid polaritonic modes of graphene plasmons and dielectric surface polar phonons produce a thermal photocurrent in graphene with spectral features that are tunable by gate voltage, nanoribbon width, and light polarization. Second, phonon po...
متن کاملExperimental Demonstration of >230° Phase Modulation in Gate-Tunable Graphene-Gold Reconfigurable Mid-Infrared Metasurfaces.
Metasurfaces offer significant potential to control far-field light propagation through the engineering of the amplitude, polarization, and phase at an interface. We report here the phase modulation of an electronically reconfigurable metasurface and demonstrate its utility for mid-infrared beam steering. Using a gate-tunable graphene-gold resonator geometry, we demonstrate highly tunable refle...
متن کاملTunable mid-infrared coherent perfect absorption in a graphene meta-surface
Graphene has drawn considerable attention due to its intriguing properties in photonics and optoelectronics. However, its interaction with light is normally rather weak. Meta-surfaces, artificial structures with single planar function-layers, have demonstrated exotic performances in boosting light-matter interactions, e.g., for absorption enhancement. Graphene based high efficiency absorber is ...
متن کاملAlignment of graphene nanoribbons by an electric-field
In this paper, we develop an analytical approach to predict the field-induced alignment of cantilevered graphene nanoribbons. This approach is validated through molecular simulations using a constitutive atomic electrostatic model. Our results reveal that graphene’s field-oriented bending angle is roughly proportional to the square of field strength or the graphene length for small deformations...
متن کاملGraphene photodetectors with ultra-broadband and high responsivity at room temperature.
The ability to detect light over a broad spectral range is central to several technological applications in imaging, sensing, spectroscopy and communication. Graphene is a promising candidate material for ultra-broadband photodetectors, as its absorption spectrum covers the entire ultraviolet to far-infrared range. However, the responsivity of graphene-based photodetectors has so far been limit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nanotechnology
دوره 26 13 شماره
صفحات -
تاریخ انتشار 2015